Sequence memory for prediction, inference and behaviour.
نویسندگان
چکیده
In this paper, we propose a mechanism which the neocortex may use to store sequences of patterns. Storing and recalling sequences are necessary for making predictions, recognizing time-based patterns and generating behaviour. Since these tasks are major functions of the neocortex, the ability to store and recall time-based sequences is probably a key attribute of many, if not all, cortical areas. Previously, we have proposed that the neocortex can be modelled as a hierarchy of memory regions, each of which learns and recalls sequences. This paper proposes how each region of neocortex might learn the sequences necessary for this theory. The basis of the proposal is that all the cells in a cortical column share bottom-up receptive field properties, but individual cells in a column learn to represent unique incidences of the bottom-up receptive field property within different sequences. We discuss the proposal, the biological constraints that led to it and some results modelling it.
منابع مشابه
Forgetting Counts: Constant Memory Inference for a Dependent Hierarchical Pitman-Yor Process
We propose a novel dependent hierarchical Pitman-Yor process model for discrete data. An incremental Monte Carlo inference procedure for this model is developed. We show that inference in this model can be performed in constant space and linear time. The model is demonstrated in a discrete sequence prediction task where it is shown to achieve state of the art sequence prediction performance whi...
متن کاملPredicting stock prices on the Tehran Stock Exchange by a new hybridization of Fuzzy Inference System and Fuzzy Imperialist Competitive Algorithm
Investing on the stock exchange, as one of the financial resources, has always been a favorite among many investors. Today, one of the areas, where the prediction is its particular importance issue, is financial area, especially stock exchanges. The main objective of the markets is the future trend prices prediction in order to adopt a suitable strategy for buying or selling. In general, an inv...
متن کاملApplication of Artificial Neural Network and Fuzzy Inference System in Prediction of Breaking Wave Characteristics
Wave height as well as water depth at the breaking point are two basic parameters which are necessary for studying coastal processes. In this study, the application of soft computing-based methods such as artificial neural network (ANN), fuzzy inference system (FIS), adaptive neuro fuzzy inference system (ANFIS) and semi-empirical models for prediction of these parameters are investigated. Th...
متن کاملPrediction of toxicity of aliphatic carboxylic acids using adaptive neuro-fuzzy inference system
Toxicity of 38 aliphatic carboxylic acids was studied using non-linear quantitative structure-toxicityrelationship (QSTR) models. The adaptive neuro-fuzzy inference system (ANFIS) was used to construct thenonlinear QSTR models in all stages of study. Two ANFIS models were developed based upon differentsubsets of descriptors. The first one used log ow K and LUMO E as inputs and had good predicti...
متن کاملCoastal Water Level Prediction Model Using Adaptive Neuro-fuzzy Inference System
This paper employs Adaptive Neuro-Fuzzy Inference System (ANFIS) to predict water level that leads to flood in coastal areas. ANFIS combines the verbal power of fuzzy logic and numerical power of neural network for its action. Meteorological and astronomical data of Santa Monica, a coastal area in California, U. S. A., were obtained. A portion of the data was used to train the ANFIS network, wh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Philosophical transactions of the Royal Society of London. Series B, Biological sciences
دوره 364 1521 شماره
صفحات -
تاریخ انتشار 2009